Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Jin-Long Geng, ${ }^{\text {a }}$ Jun Ni, ${ }^{\text {b }}$
Rui Liu, ${ }^{\text {b }}$ Hui-Lan Chen ${ }^{\text {b }}$ and Zhi-Lin Wang ${ }^{\text {b }}$ *
${ }^{\text {a }}$ College of Science, Nanjing Agricultural University, Nanjing 210095, People's Republic of China, and ${ }^{\mathbf{b}}$ Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: dpxue23@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.049$
$w R$ factor $=0.118$
Data-to-parameter ratio $=12.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

4-[N,N-Bis(2-cyanoethyl)amino]pyridinium perchlorate

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{4}{ }^{+} \cdot \mathrm{ClO}_{4}{ }^{-}$, the planar geometry around the amino N atom in the cation suggests conjugation with the π-system of the pyridine ring. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonding interactions play a key role in the crystal packing.

Comment

The synthesis of 4 -(N, N-dimethylamino)pyridine (DMAP) has attracted much attention for its excellent catalytic properties in many organic reactions (Höfle et al., 1978; Scriven, 1983; Steglich \& Hoefle, 1969). Its derivatives also display catalytic properties (Huang et al., 1994; Scriven, 1983). In our present research, we find that $4-[N, N$-bis(2-cyanoethyl)amino]pyridine (CEAP) can catalyse an acylation reaction. As part of our research on CEAP and its derivatives, we prepared the title compound, (I). As a derivative of DMAP, compound (I) also has potential catalytic properties in organic reactions.

(I)

The title compound, (I), consists of a protonated $4-[\mathrm{N}, \mathrm{N}-$ bis(2-cyanoethyl)amino]pyridinium cation and a $\mathrm{ClO}_{4}{ }^{-}$anion (Fig. 1). The sum of the bond angles around amino atom N 2 is 360° (Table 1), as observed in aminopyridines and their derivatives (Chao et al., 1977; Ohms \& Guth, 1983). The N2-C3 bond length of 1.340 (3) \AA is shorter than the corresponding bond length in CEAP [1.374 (3) \AA; Ni, Li, Qi et al., 2003] and in its Ag complex $\left[1.358(5)-1.385(5) \AA \AA^{\prime} ; \mathrm{Ni}, \mathrm{Li}\right.$, Xue et al., 2003]. This geometric conformation reflects conjugation between the lone pair of N2 and the π system of the pyridine ring (Chao \& Schempp, 1977). The protonation makes this conjugation more strong. The $\mathrm{Cl}-\mathrm{O}$ distances in the ClO_{4}^{-} are in the range 1.403 (3) -1.430 (3) \AA, which is within the range of typical values (Riera et al., 1998). The $\mathrm{ClO}_{4}{ }^{-}$anion and the cation are connected by $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 4$ and $\mathrm{N} 1-$ H11…O2 interactions.

Atoms H9a and H10a on the cation interact with N 4 on an adjacent cation at $(x-1, y, z)$ through $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2). Furthermore, atom H7a also interacts with N 3 on an adjacent cation at $(x+1, y, z)$. The propagation of

Received 26 September 2003 Accepted 30 September 2003 Online 15 October 2003

Figure 1
The molecular structure of (I), shown with 30% probability displacement ellipsoids.

Figure 2
(a) View of one molecular chain down the a axis. (b) View of one molecular chain along the a axis. [Symmetry code: $(a) x+1, y, z$.]
molecules and the hydrogen bonds produces a chain along the a axis (Fig. 2). The molecules in a chain are parallel with each other and the angle between the molecular chain and the pyridine plane is $40.6(2)^{\circ}$. Many chains are arranged along the

Figure 3
The crystal packing of (I), viewed along the a axis.

Figure 4
The hydrogen-bond interactions between adjacent chains. H atoms not participating in the hydrogen bonds have been omitted for clarity. [Symmetry code: $(A) x-1, \frac{3}{2}-y, \frac{1}{2}+z$.]
c axis forming a layer. We can see in Fig. 3 that all chains in a layer are parallel with each other. The molecules in adjacent chains have the opposite direction and the dihedral angle between the pyridine planes in adjacent chains is $8.5(2)^{\circ}$. This makes it easy for them to bond together through $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between cations and $\mathrm{ClO}_{4}{ }^{-}$anions. As shown in Fig. 4, atoms H 1 and H 2 on the cation interact with O 4 and O 1 of the $\mathrm{ClO}_{4}{ }^{-}$anion at $\left(1+x, \frac{3}{2}-y, z-\frac{1}{2}\right)$ through $\mathrm{C} 1-$ $\mathrm{H} 1 \cdots \mathrm{O} 4$ and $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$ hydrogen bonds. The adjacent layers are also linked by a $\mathrm{C} 6-\mathrm{H} 6 b \cdots \mathrm{~N} 4(1-x, 2-y, 2-z)$ hydrogen bond.

Experimental

$\mathrm{FeSO}_{4} \quad(152 \mathrm{mg}, 1 \mathrm{mmol})$ and 4 -[N, N-bis(2-cyanoethyl)amino]pyridine ($200 \mathrm{mg}, 1 \mathrm{mmol}$) were added to 40 ml ethanol. The reaction mixture was refluxed for $1.5 \mathrm{~h} . \mathrm{NaClO}_{4}(122.5 \mathrm{mg})$ was then added to the reaction mixture and stirred for 15 min . White powder of (I) was filtered, washed with ethanol and dried in a vacuum desiccator, yielding 246 mg (82%). Colorless crystals of (I) were obtained by recrystallization from ethanol. The elemental analysis data for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{4}{ }^{+} \cdot \mathrm{ClO}_{4}^{-}$are as follows, calculated: $\mathrm{C} 43.90, \mathrm{H} 4.23, \mathrm{~N}$ 18.62%; found: C 43.78, H 4.27, N 18.49%.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{4}{ }^{+} \cdot \mathrm{ClO}_{4}{ }^{-}$
$M_{r}=300.70$
Monoclinic, $P 2_{1} / c$
$a=5.403(1) \AA$
$b=30.252(5) \AA$
$c=8.293(2) \AA$
$\beta=99.24(1)^{\circ}$
$V=1337.9(5) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.493 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2473 \\
& \quad \text { reflections } \\
& \theta=2.6-25.9^{\circ} \\
& \mu=0.31 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Needle, colorless } \\
& 0.40 \times 0.20 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.925, T_{\text {max }}=0.957$
6812 measured reflections

> 2345 independent reflections
> 1848 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.062$
> $\theta_{\max }=25.0^{\circ}$
> $h=-6 \rightarrow 6$
> $k=-35 \rightarrow 35$
> $l=-8 \rightarrow 9$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.118$
$S=1.00$
2345 reflections
185 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 11 \cdots \mathrm{O} 2$	$0.84(3)$	$2.09(3)$	$2.913(4)$	$164(3)$
$\mathrm{C} 1-\mathrm{H} 1 \cdots 4^{\mathrm{i}}$	0.93	2.69	$3.326(4)$	126
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.93	2.66	$3.579(3)$	168
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 4$	0.93	2.44	$3.169(4)$	135
$\mathrm{C} 6-\mathrm{H} 6 b \cdots \mathrm{~N} 4^{\text {ii }}$	0.97	2.65	$3.487(3)$	145
$\mathrm{C} 7-\mathrm{H} 7 a \cdots 3^{\text {iii }}$	0.97	2.73	$3.407(4)$	127
$\mathrm{C} 9-\mathrm{H} 9 a \cdots 4^{\text {iv }}$	0.97	2.65	$3.163(4)$	113
$\mathrm{C} 10-\mathrm{H} 10 a \cdots \mathrm{~N}^{\text {iv }}$	0.97	2.57	$3.257(4)$	128

Symmetry codes: (i) $1+x, \frac{3}{2}-y, z-\frac{1}{2}$; (ii) $1-x, 2-y, 2-z$; (iii) $1+x, y, z$; (iv) $x-1, y, z$.

Atom H 11 am bonded to N 1 was located in a difference Fourier map and refined isotropically. The positions of the other H atoms were fixed geometrically ($\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$) and refined using the riding-model approximation ($U_{\text {iso }}=1.2$ times $U_{\text {eq }}$ ofthe parent atom).

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This project was supported by the Natural Science Foundation of China (No. 20171021) and Specialized Research Fund for the Doctoral Program of Higher Education (No. 2000028436).

References

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Chao, M. \& Schempp, E. (1977). Acta Cryst. B33, 1557-1564.
Chao, M., Schempp, E. \& Rosenstein, R. D. (1977). Acta Cryst. B33, 18201823.

Höfle, G., Steglich, W. \& Vorbrüggen, H. (1978). Angew. Chem. Int. Ed. Engl. 17, 569-583.
Huang, J. T., Cao, A. H., Shao, S. X., Sun, J. W. \& Liu, Z. H. (1994). Huaxue Shijie, 4, 188-190. (In Chinese.)
Ni, J., Li, Y. Z., Qi, W. B., Liu, Y. J., Chen, H. L. \& Wang, Z. L. (2003). Acta Cryst. C59, o470-o472.
Ni, J., Li, Y. Z., Xue, Z., Chen, H. L. \& Wang, Z. L. (2003). Acta Cryst. C59, m201-m203.
Ohms, U. \& Guth, H. (1983). Z. Kristallogr. 162, 174.
Riera, X., Moreno, V., Font-Bardia, M. \& Solans, X. (1998). Polyhedron, 18, 65-78.
Scriven, E. F. V. (1983). Chem. Soc. Rev. 12, 129-161.
Steglich, W. \& Hoefle, G. (1969). Angew. Chem. Int. Ed. Engl. 8, 981.

